If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+18x+19=0
a = 3; b = 18; c = +19;
Δ = b2-4ac
Δ = 182-4·3·19
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-4\sqrt{6}}{2*3}=\frac{-18-4\sqrt{6}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+4\sqrt{6}}{2*3}=\frac{-18+4\sqrt{6}}{6} $
| x-18=2x-50 | | 14+5=-5x—18x+90+5 | | 8x+30=62 | | -4x+6(4x-3)=8 | | x-18=(x-25)x2 | | 1/2v=4 | | 5/4b=8 | | 8c-6c+11=12 | | 8x+5(6)=62 | | -4x+24-18=8 | | 3⁄5*n=6 | | x2+8x+15=80 | | (w-5)*w=126 | | 2r+2=12 | | 3(y+6)-4=32-(5y+2) | | 28-5=2+3x+9 | | 2x-27/2=3-4x | | 8x+-4=7 | | 5-x+4/5=11-3x | | 13x+72=-2 | | 15x=(200÷5)+50 | | 5x-12x+165+12x+65=23 | | x+(.2x)+2*(.2x)-3=61 | | 4-2u=1.92 | | 8w-2=10w-(-30)+4 | | 5c+2=2(c-5) | | (2x+4)2=100 | | 6r-2=-14+6(r+2) | | 7.9=3c-10.1 | | 980=3.14*r^2*20 | | Y-8=-2/3x+-14/3 | | x-5=3√x |